
# **CURSO**

# UTILIZAÇÃO DO SISTEMA DE POSICIONAMENTO GLOBAL NO MEIO RURAL



## UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS RURAIS DEPARTAMENTO DE ENGENHARIA RURAL LABORATÓRIO DE GEOMÁTICA



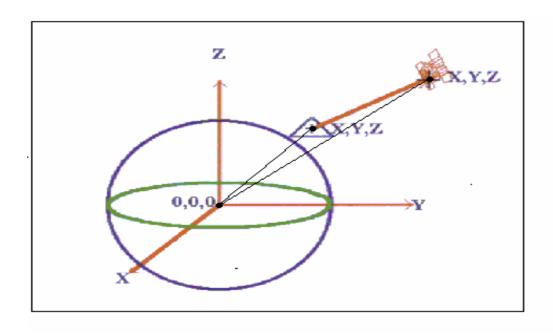
## **CURSO**

# UTILIZAÇÃO DO SISTEMA DE POSICIONAMENTO GLOBAL NO MEIO RURAL

Elaborado por: Engº. Agr. Dr. Adroaldo Dias Robaina

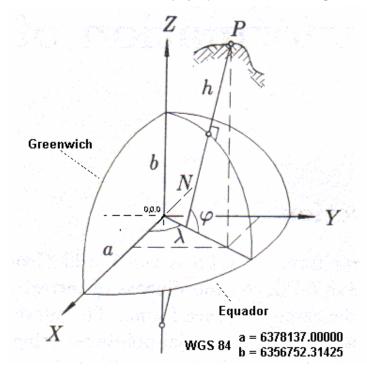
Enga. Fltal. Ana Caroline Paim Benedetti

# SUMÁRIO


| Definição de Sistema de Posicionamento Global       | 04 |
|-----------------------------------------------------|----|
| Sistema de Referência                               | 04 |
| Sistema de Coordenadas                              | 05 |
| Origem do Sistema                                   | 06 |
| Especificação para uso civil                        | 06 |
| Vantagens e desvantagens do Sistema                 | 06 |
| Composição ou Segmentos do Sistema                  | 07 |
| Segmento Espaço                                     | 07 |
| Segmento de Controle                                | 09 |
| Segmento do Usuário                                 | 10 |
| Tipos de Receptores                                 | 10 |
| Princípio Básico do Posicionamento                  | 12 |
| Formas de Medição da Distância Satélite – Receptor  | 12 |
| Cálculo das Coordenadas do Receptor                 | 13 |
| Fatores que afetam a Precisão do Posicionamento     | 14 |
| Erro grosseiro devido a diferença de DATUM          | 17 |
| Altimetria com GPS                                  | 18 |
| Métodos de Obtenção de Coordenadas                  | 19 |
| Métodos de Posicionamento                           | 23 |
| Preparação para Execução do Levantamento – Rastreio | 27 |
| Anexos                                              | 28 |
| Zonas UTM no Brasil                                 | 29 |
| Tipos de Redes GPS                                  | 30 |
| Equipamentos GPS                                    | 31 |
| Bibliografia                                        | 33 |

## DEFINIÇÃO DE SISTEMA DE POSICIONAMENTO GLOBAL

O Sistema de Posicionamento Global (GPS) é um sistema espacial de posicionamento, que vem sendo desenvolvido pelo Departamento de Defesa dos EUA, que pode ser usado para determinar a posição, **em relação a um sistema de referência**, de um ponto qualquer sobre ou próximo à superfície da Terra.


## SISTEMA DE REFERÊNCIA - Datum

O GPS permite aos usuários determinar suas posições expressas em latitude, longitude e altura elipsoidal, em função das coordenadas cartesianas X,Y,Z em **relação ao centro de massa da Terra** (0, 0, 0). Além de coordenadas, o sistema fornece uma medida de tempo.



Word Geodetic System - WGS 84

1. Geocentricas (x,y,z) -----> Geográficas(f,?,h)



$$\varphi = \arctan \frac{Z + e'^2 b \sin^3 \theta}{p - e^2 a \cos^3 \theta}$$

$$\lambda = \arctan \frac{Y}{X}$$

$$h = \frac{p}{\cos \varphi} - N$$

$$e'^2 = \frac{a^2 - b^2}{h^2}$$

$$N = \frac{a^2}{\sqrt{a^2 \cos^2 \varphi + b^2 \sin^2 \varphi}}$$

$$p = \sqrt{X^2 + Y^2}$$

$$\theta = \arctan \frac{Z a}{p b}$$

2. Geográficas(f , ?, h) ----- > Geocentricas (x,y,z)

$$X = (N + h) \cos j \cos l$$

$$Y = (N + h) \cos j \sin l$$

$$Z = (b^2 / a^2 N + h) \sin j$$

### Exemplo numérico:

Considerando um ponto com latitude sul  $\,\phi=30^\circ$ , longitude oeste  $\lambda=53^\circ$  e altura elipsoidal h = 100 m, referidos ao elipsóide WGS 84, as coordenadas geocêntricas do ponto são  $\,X=3327040.016$  m,  $\,Y=-4415131.224$  m e  $\,Z=-3213301.183$  m.

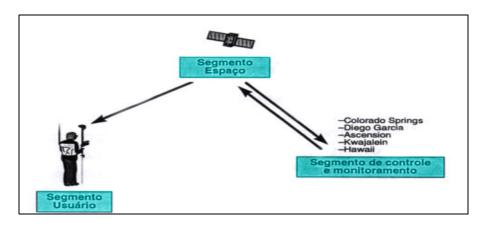
#### **ORIGEM DO SISTEMA**

- NAVSTAR GPS
- NAVigation Satellite with Timing And Ranging Global Positioning System

## ESPECIFICAÇÃO GPS PARA USO CIVIL

- Disponibilidade contínua 24 horas/dia
- Cobertura Global
- Latitude/Longitude/Altitude/Data/hora
- Precisão absoluta 100/156 metros (HV) sob SA
- Precisão relativa 5m 0,005m

#### **VANTAGENS**

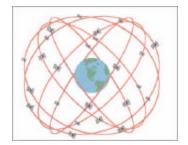

- Visada
  - dispensa intervisibilidade entre as estações
  - permite determinar linhas mais longas
- Precisão
  - Métodos que cumpre normas do IBGE e ABNT
- Rapidez
  - automatização na coleta, processamento
- Coordenadas 3D
  - transporte plani-altimétrico simultâneo

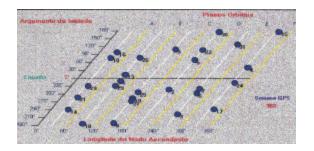
#### **DESVANTAGENS**

- Visada aos satélites
  - problemas com vegetação densa e alta
  - vetado para túneis/minas subterrâneas
- Área urbana alta
  - multicaminhamento
  - poucos satélites GPS
- Custo (ainda) alto
  - equipamentos e suprimentos
  - operadores
- Não faz "nivelamento"
  - necessita informação "geoidal"

## COMPOSIÇÃO OU SEGMENTOS DO SISTEMA

A estrutura do Sistema de Posicionamento Global é dividida em três entidades: segmento do espaço, segmento de controle e segmento dos usuários.



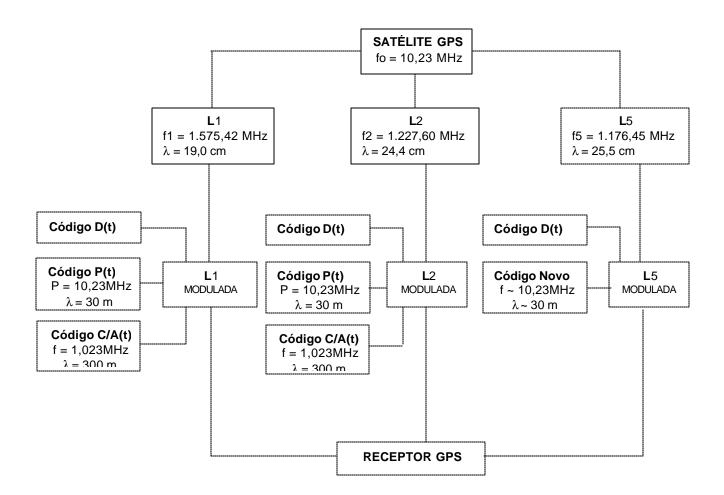


## **SEGMENTO DO ESPAÇO**

- 24 SATÉLITES NA CONSTELAÇÃO FINAL COM ÓRBITA DE 20.200 KM E PERÍODO DE 12 HORAS
- 6 PLANOS COM INCLINAÇÃO 55° EM RELAÇÃO AO EQUADOR COM 4 SATÉLITES POR PLANO

O segmento do espaço é formado pelos satélites que possuem as seguintes funções:

- manter uma escala de tempo bastante precisa. Para isso cada satélite possui dois relógios de césio e de rubídio;
- emitir dois sinais ultra-sensíveis em frequência, modulados em fase através dos códigos denominados pseudo-aleatórios, sobre as duas frequências específicas do sistema (L1 = 1.57542 GHz e L2 = 1.22760 GHz);
- receber e armazenar as informações oriundas do segmento de controle;
- efetuar manobras orbitais para guardar a sua posição definida na constelação ou para substituir um outro satélite defeituoso;
- retransmitir informações (efemérides ou mensagens) ao solo.






## • SATÉLITE GPS



- TRANSMISSOR DE SINAL DE RÁDIO
- DUAS FREQÜÊNCIAS: L1 e L2
- TRANSMITE CÓDIGOS C/A e P
- TRANSMITE POSIÇÃO (EFEMÉRIDES) e TEMPO - Cód. D
- IDENTIFICAÇÃO: PRN ou SVN

## ESTRUTURA DO SINAL DOS SATÉLITES GPS



Cada satélite transmite continuamente sinais em duas ondas portadoras L1 e L2 e sobre as portadoras são modulados dois códigos. Sobre a L1, modula-se o código C/A (Clear Access ou Course Aquisition) e sobre as portadoras L1 e L2, modula-se o código P (Precise Code).

Os sinais transmitem ainda outras informações como mensagens de navegação (Código D), que trazem as efemérides, correções dos relógios dos satélites e saúde dos satélites que são utilizados pelos receptores.

#### Novidades:

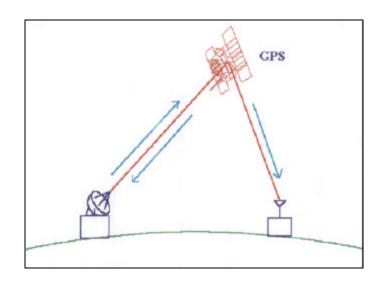
- Código C/A modulado sobre a portadora L2;
- Novo código modulado sobre nova portadora (L5) com frequência de 1176.45 MHz (
   10x maior que o código C/A melhora a precisão do GPS)

## **NOTA: CÓDIGO D (MENSAGENS)**

#### SEGMENTO DE CONTROLE

O segmento de controle é formado por um grupo de cinco estações terrestres que registram os sinais GPs, efetuam medidas meteorológicas e enviam os dados para a estação principal, que calcula as efemérides dos satélites e também calcula os coeficientes de correção dos relógios e transmite-os para as estações de transmissão.

Efemérides são mensagens transmitidas pelos satélites, com informações de sua órbita ( em relação à origem do sistema de referência) e do seu sistema de tempo.


Para medições mais precisas necessita-se conhecer as efemérides precisas, fornecidas pelas agências *Defense Mapping Agency*.

As estações de controle estão localizadas em colorado Springs, Hawai, Ilha Ascensão ( no Atlântico Sul), Diego Garcia (Oceâno Índico) e Kwajalein (Pacífico Norte).

**FUNÇÃO**: ATUALIZAR A MENSAGEM DE NAVEGAÇÃO (CÓDIGO D - EFEMÉRIDES E AS CORREÇÕES DO RELÓGIO) TRANSMITIDA PELO SATÉLITE.

#### **COMPONENTES:**

- CONTROLE CENTRAL
- ESTAÇÕES DE MONITORAMENTO
- ANTENAS TERRESTRES



## **SEGMENTO DO USUÁRIO**

COMPREENDE TODOS OS USUÁRIOS DO SISTEMA, OS TIPOS DE RECEPTORES E OS MÉTODOS DE POSICIONAMENTO.

## **SERVIÇOS OFERECIDOS:**

SPS: USUÁRIOS CIVIS - CÓDIGO C/A - SEM RESTRIÇÃO

PPS: USUÁRIOS MILITARES - CÓDIGO P - RESTRITO

O uso civil é caracterizado pela não obtenção de coordenadas precisas, em tempo real, por um único receptor.

#### **TIPOS DE RECEPTORES**

#### 1. QUANTO AO NÚMERO DE FREQÜÊNCIAS

- SIMPLES FREQÜÊNCIA: recebem somente a frequencia L1. Todo acesso produzido para o código C/A é dado pela correlação entre o sinal do satélite com uma réplica gerada no receptor.
- DUPLA FREQÜÊNCIA: recebem duas frequências L1 e L2 e podem ter acesso ao código C/A e/ou código P.

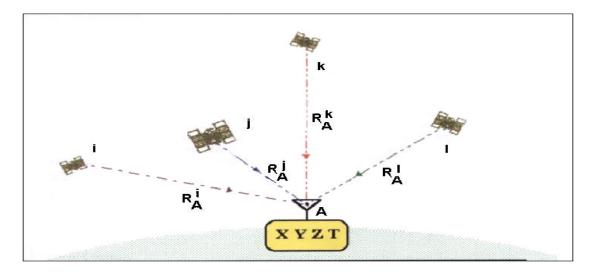
#### 2. QUANTO AO NÚMERO DE CANAIS

- MONOCANAIS: são receptores que possuem apenas um canal que se move rapidamente de um satélite para outro. Estes tipos de receptores são construídos com um número reduzido de circuitos e por isso são mais baratos. São mais lentos na atualização das coordenadas, imprecisos e são mais susceptíveis a perda de ciclo durante a observação.
- MULTICANAIS: possuem vários canais independentes para rastrear, simultanemante, cada satélite visível no horizonte.

#### 3. QUANTO AO TIPO DE CANAIS

- SEQÜENCIAIS ou INDEPENDENTES: cada canal rastreia um único satélite de cada vez, passando a captar dados de outro satélite tão logo tenha armazenado dados suficiente para o cálculo das coordenadas do ponto.
- MULTIPLEXADOS: tem funcionamento semelhante aos receptores de canais sequenciais, mas apresentam a vantagem de serem mais rápidos na mudança para a captação dos dados de outros satélites. Possuem circuitos eletrônicos mais complexos, sendo mais precisos e mais caros.

#### 4. QUANTO AO TIPO DE SINAL OBSERVADO


- RECEPTORES CÓDIGO C/A
- RECEPTORES PORTADORAS L1 e CÓDIGO C/A
- RECEPTORES PORTADORAS L1 / L2 e CÓDIGO C/A
- RECEPTORES CÓDIGO P
- RECEPTORES PORTADORAS L1 / L2 e CÓDIGOS C/A e P

#### 5. QUANTO AO TIPO DE LEVANTAMENTO

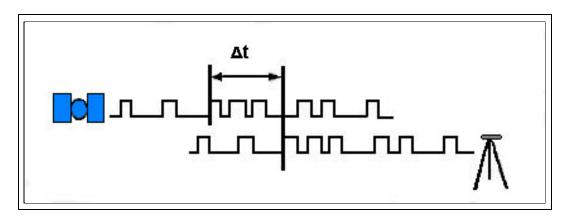
- NAVEGAÇÃO
- TOPOGRÁFICOS
- CADASTRAIS
- GEODÉSICOS

## PRINCÍPIO BÁSICO DO POSICIONAMENTO

Sendo dado um sistema cartesiano de referência, um ponto A do espaço pode ser determinado por suas coordenadas X, Y e Z.



A idéia básica do posicionamento por satélites GPS, consiste em:


- Medir as distancias satélite-receptor.
- Determinar as coordenadas dos satélites Xs, Ys e Zs.
- Calcular as coordenadas do receptor no ponto A (XA, YA e ZA).

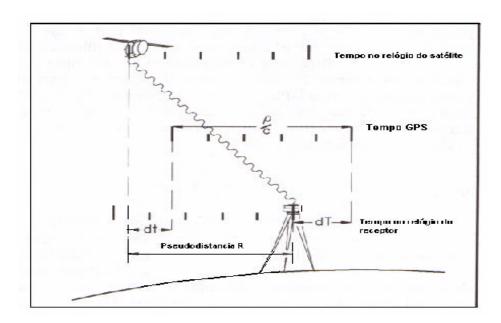
## FORMAS DE MEDIÇÃO DA DISTÂNCIA SATÉLITE-RECEPTOR

• PELO TEMPO DE PROPAGAÇÃO

Distância = Velocidade da luz x Tempo de propagação

MEDIÇÃO DO TEMPO (?t): TEMPO NECESSÁRIO PARA A CORRELAÇÃO ENTRE CÓDIGO RECEBIDO DO SATÉLITE E A SUA RÉPLICA GERADA PELO RECEPTOR.




## PELA DIFERENÇA DE FASE DA PORTADORA L1 ou L2

Distância = (N° de ciclos inteiros + fração) x comprimento de onda

## **COORDENADAS DOS SATÉLITES Xs, Ys e Zs**

Os sinais de rádio transmitidos pelos satélites GPS fornecem através da mensagem de navegação (Código D) os elementos orbitais necessários para a determinação das coordenadas de cada satélite (Xs, Ys e Zs). As efemérides utilizadas podem ser as **transmitidas**, através da mensagem de navegação em tempo real, ou as **precisas** que podem ser obtidas 48 horas ou 14 dias, após o rastreio.

## CÁLCULO DAS COORDENADAS DO RECEPTOR X, Y e Z



Equação básica - Código

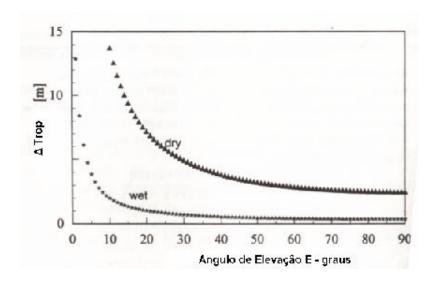
$$R_A^j(t) = \varrho_A^j(t) + c \, \delta^j(t) - c \, \delta_A(t) + \Delta^{\text{Trop}} + \Delta^{\text{Iono}}$$

$$\varrho_i^j(t) = \sqrt{(X^j(t) - X_i)^2 + (Y^j(t) - Y_i)^2 + (Z^j(t) - Z_i)^2}$$

## FATORES QUE AFETAM A PRECISÃO DO POSICIONAMENTO

## ATRASO NA IONOSFERA (? lono)

Ignorado Modelado Medido


## ATRASO NA TROPOSFERA (? Trop)

Ignorado

Modelado - com valores padrão

Modelado - com valores medidos na hora do rastreio

#### Efeito da elevação do satélite sobre o atraso na troposfera



## FALTA DE SINCRONIZAÇÃO DO RELÓGIO DO SATÉLITE COM TEMPO GPS

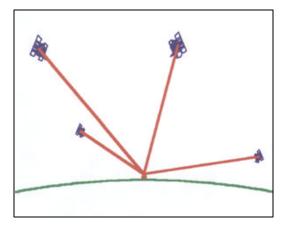
A mensagem de navegação traz os coeficientes necessários para o cálculo da correção do relógio dos satélites, na época da realização das medidas. A expressão abaixo permite fazer a referida correção.

Tgps = 
$$a_0 + a_1$$
.  $(t-t_0) + a_2$ .  $(t-t_0)^2$ 

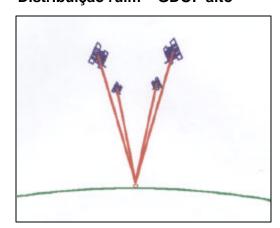
### FORMA DE CALCULO DAS COORDENADAS DOS SATÉLITE

EFEMÉRIDES TRANSMITIDAS – podem ser utilizadas para o processamento em tempo real ou pós-processado.

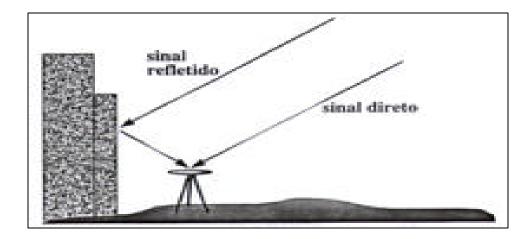
EFEMÉRIDES PRECISAS – somente pós-processado. Tempo de obtenção após 2 dias ou após 14 dias.


## DISTRIBUIÇÃO GEOMÉTRICA DOS SATÉLITES - DOP

A relação entre o desvio padrão das observações  $?_r$ , e o desvio padrão associado à posição ?, é descrito por um escalar que é frequentemente usado na navegação: o Dilution Of Precision (DOP). O fator DOP descreve o efeito da distribuição geométrica dos satélites no espaço sobre a precisão obtida na solução de navegação, sendo estimado por ? = DOP.  $?_r$ . O melhor valor possível para o DOP é igual a 1 e o pior é igual a infinito.


O GDOP é interpretado como sendo a razão entre o erro no posicionamento e o erro inerente do sistema GPS. O valor de GDOP deve ser pequeno (inferior a 6).

O GDOP expressa a influência da geometria e do tempo na qualidade das observações, onde pequenos valores indicam boa geometria para os satélites selecionados e também pequenos erros no posicionamento e na determinação da medida do tempo.


Distribuição Boa – GDOP baixo

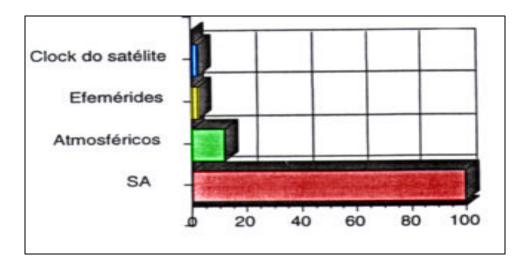


Distribuição ruim - GDOP alto

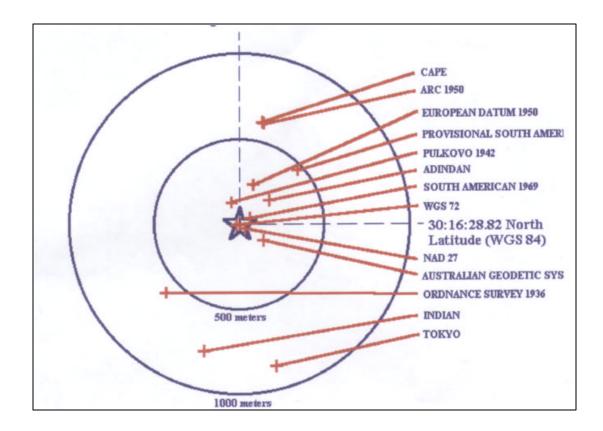


#### **MULTICAMINHAMENTO**




#### **DISPONIBILIDADE SELETIVA - SA**

O objetivo é o de degradar, propositalmente, a obtenção de coordenadas precisas com um único receptor pelos usuários do SPS. Existem duas formas de implementar a SA.


Técnica de implementação  $\delta$  - alteração da frequência fundamental do oscilador do satélite, afetando tanto as portadoras como os códigos.

Técnica de implementação  $\epsilon$  - truncamento das informações transmitidas na mensagem de navegação necessárias (efemérides) para o cálculo das coordenadas dos satélites.

## COMPARAÇÃO DAS DIVERSAS FONTES DE ERROS NAS MEDIDAS



Nota: a SA foi desativada em maio de 2000.



#### **Nota Importante:**

Atualmente as cartas no Brasil, utilizam um sistema de referencia do tipo local, denominado SAD 69 (South American Datum 69), por compromissos internacionais. As cartas mais antigas utilizavam o sistema de referencia local denominado Córrego Alegre.

Se quisermos locar uma estrada municipal, que foi aberta depois da carta confecionada, cujo datum horizontal é SAD 69, devemos cuidar que as coordenadas a serem plotadas sobre a carta devem estar no mesmo sistema de referencia, a fim de evitarmos esse tipo de erro grosseiro.

PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR

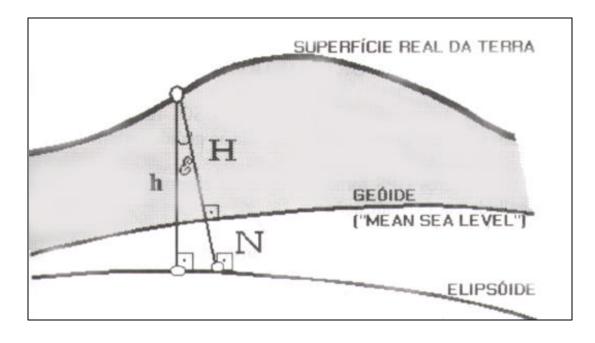
DATUM VERTICAL: IMBITUBA-SANTA CATARINA

DATUM HORIZONTAL: SAD-69- MINAS GERAIS

ORIGEM DA QUILOMETRAGEM UTM "EQUADOR E MERIDIANO 51° W. GR"

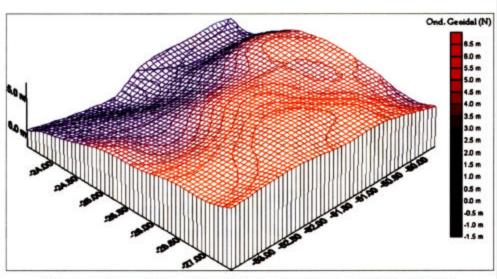
ACRESCIDAS AS CONSTANTES: 10.000 KM E 500 KM, RESPECTIVAMENTE

## PROJEÇÃO UNIVERSAL TRANSVERSA DE MERCATOR


DATUM HORIZONTAL: CÓRREGO ALEGRE — MINAS GERAIS

ORIGEM DA QUILOMETRAGEM UTM: "EQUADOR E MERIDIANO 51° W. GR."

ACRESCIDAS AS CONSTANTES: 10.000 KM E 500 KM, RESPECTIVAMENTE


## **ALTIMETRIA COM GPS**

Expressão Geral: H = h - N



H2 = h2 - N2H2 - H1 = (h2 - h1) - (N2 - N1) H1 = h1 - N1?H = ?h - ? N

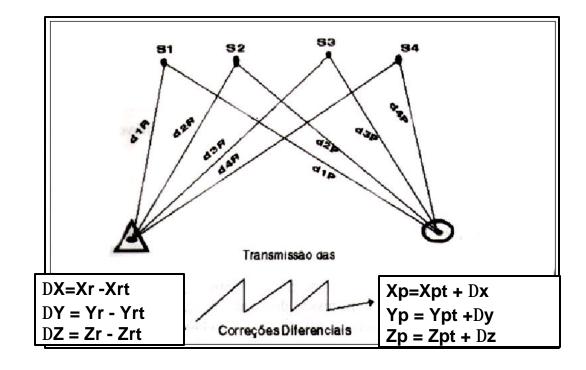
## ONDULAÇÃO GEOIDAL (N)



Separação geóide-elipsóide baseada no modelo EGM96 (Fonte: Lemoine et al, 1996)

# MÉTODOS DE OBTENÇÃO DE COORDENADAS

**ABSOLUTO** 


**DIFERENCIAL** 

**RELATIVO** 

# 1. MÉTODO ABSOLUTO - COM O CÓDIGO

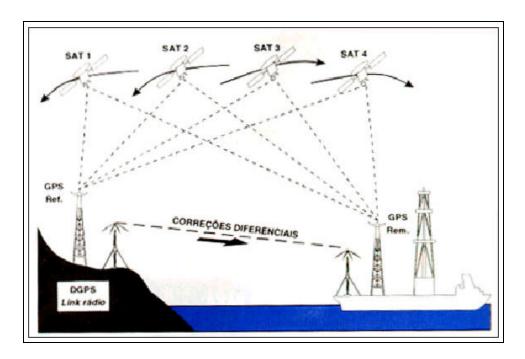
$$R_A^j(t) = \varrho_A^j(t) + c \, \delta^j(t) - c \, \delta_A(t) + \Delta^{\text{Trop}} + \Delta^{\text{Iono}}$$

## 2. MÉTODO DIFERENCIAL

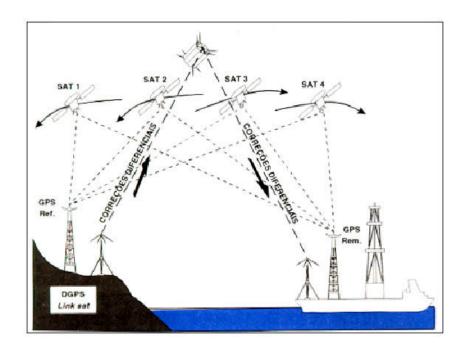


- EM TEMPO REAL LINK DE RÁDIO OU DE SATÉLITE
- PÓS-PROCESSADA

## FORMAS DE CORREÇÃO:

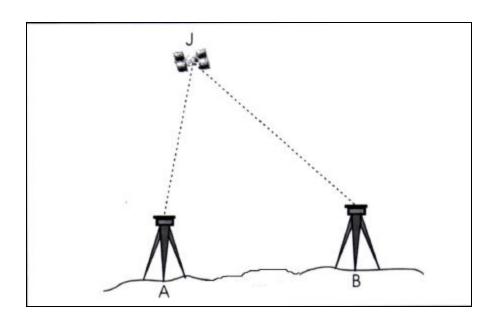

- COM AS CORREÇÕES DAS PSEUDODISTÂNCIAS R
- COM AS CORREÇÕES DE COORDENADAS ( $\Delta X, \Delta Y, \Delta Z$ )

# Exemplo de GPS diferencial Pós Processado

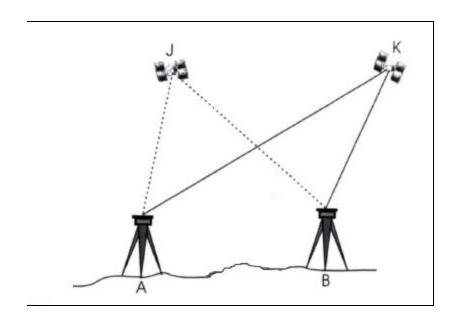

|                   |            | ESTAÇÃ    | ÃO FIXA                                |                          |                                      |
|-------------------|------------|-----------|----------------------------------------|--------------------------|--------------------------------------|
| an san magi       | mer copper | PONTO FIX | O: TORRE                               | of the                   | 100 , 1                              |
| COORI             | DENADAS    | DE REFERÊ | NCIA: UTM -                            | - DATUM S                | SAD-69                               |
| oto Ade           |            | N = 8.32  | 7.146,00 m<br>2.123,00 m<br>1.200,00 m | s disposity<br>por exemp |                                      |
| PONTOS<br>OBTIDOS | HORA       | E (m)     | N (m)                                  | H (m)                    | Δ (m)                                |
| SATÉLITES         | DATA       |           | ODO) DITTO ODO                         | D-disgn/JOXG             |                                      |
| T1000             | 10:00:00   | 10,000    | Million tott jan                       | enemechanis              | $\Delta x = -04$                     |
| 01-04-21-26       | 10/11/94   | 177.150,0 | 8.322.100,0                            | 1.150,0                  | $\Delta y = +23$<br>$\Delta z = +50$ |
| T1010             | 10:10:00   | -1-0 0 01 |                                        |                          | $\Delta x = +06$                     |
| 01-04-21-31       | 10/11/94   | 177.140,0 | 8.322.146,0                            | 1.230,0                  | $\Delta y = -23$<br>$\Delta z = -30$ |

| ESTAÇÃO MÓVEL                                |                      |           |             |        |                                                    |                 |             |        |  |
|----------------------------------------------|----------------------|-----------|-------------|--------|----------------------------------------------------|-----------------|-------------|--------|--|
| PONTO                                        | HORA                 |           |             |        |                                                    | PONTO CORRIGIDO |             |        |  |
| ZONA<br>SATs                                 | DATA                 | E1 (m)    | Nl (m)      | H1 (m) | Δ (m)                                              | Ec (m)          | Nc (m)      | Hc (m) |  |
| R1000<br>Z=23L                               | 10:00:00             | 180.120,0 | 8.300,100,0 | 150.0  | $Ax = -04$ $\Delta y = +23$ $\Delta z = +50$       | 180.116,0       | 8.300.123,0 | 200,0  |  |
| 01-04-21-26<br>R1010<br>Z=23L<br>01-04-21-31 | 10:10:00<br>10/11/94 | 185.100,0 | 8.350.100,0 | 120,0  | $\Delta x = +06$ $\Delta y = -23$ $\Delta z = -30$ | 185.106,0       | 8,350 077,0 | 0,000  |  |

DGPS - LINK DE RÁDIO




**DGPS - LINK DE SATÉLITE** 




# 3. MÉTODO RELATIVO

## 3.1 - COM O CÓDIGO



**DUPLA DIFERENÇA** 



## MÉTODOS DE POSICIONAMENTO



#### Método Estático

Técnica tradicional de medição GPS, onde cada estação é ocupada até que uma quantidade suficiente de dados tenha sido coletada para quatro ou mais satélites.

O tempo de observação varia de acordo com a quantidade de satélites, as condições atmosféricas, o tipo de receptor e o comprimento da linha base. Experiências com GPS geodésico mostram que esse método exige de 1 a 4 horas. No caso de GPS topográfico esse tempo dobra.

O método estático é ideal para distâncias maiores que 15km, sendo utilizado para implantação, controle e densificação de redes geodésicas, estabelecimento de pontos de controle para aerofotogrametria e para vários outros trabalhos de precisão.

#### Método Rápido Estático

Esse método é uma variação do método estático, que foi desenvolvida para bases curtas, menores que 15 km.

Para bases curtas e com uma boa geometria da constelação, um receptor geodésico (dupla freqüência), pode resolver a ambigüidade em um tempo menor que o Método Estático. Isto é possível através da medida não ambígua do código P (Y) na resolução das ambigüidades; diminuindo, dessa forma, o tempo de trabalho de campo. O GPS geodésico consegue medir com um tempo de ordem de 10 a 20 minutos.

Esse método estático é ideal para adensamento de redes e outros trabalhos geodésicos que requerem alta precisão com um tempo menor.

#### Método Reocupação ou Pseudo Estático

Esse método é outra variação do método estático. É especialmente desenvolvido para situações em que se tem menos de 4 satélites disponíveis.

O método consiste em ocupar as mesmas estações várias vezes e utilizar todos os dados coletados para calcular as coordenadas das estações.

Se, por exemplo, em uma dada situação, na primeira etapa de medição, houver apenas 3 satélites disponíveis e, na segunda etapa, também houver apenas 3 satélites, o processamento será realizado como se tivessem sido observados observados 6 satélites. O tempo recomendado para re ocupar uma mesma estação é no mínimo 1 hora após a ocupação precedente.

O método reocupação é ideal para levantamentos em situações em que se tem uma configuração pouco privilegiada para a operação de um sistema GPS.

#### Método Stop and Go

Nesse método as ambigüidades são primeiramente resolvidas com um tempo de 10 a 20 minutos. Em seguida, movimenta-se um dos receptores, mantendo-se o outro em uma estação fixa. O método exige que se mantenha a comunicação em modo contínuo com os satélites durante todo o processo de medição. Os GPS topográficos e cadastrais indicam que esse método exige tempo de medição de ordem de 10 a 20 minutos para cada estação.

A maior limitação do método é a exigência de se manter uma comunicação e modo contínuo com os satélites, enquanto se movimenta o receptor. Cada vez que ocorre uma

perda de ciclo (cycle slip) é necessário permanecer no próximo ponto até que a ambigüidade seja resolvida novamente (aproximadamente 2 minutos).

Esse método é ideal para ser utilizado em cadastros e serviços topográficos rotineiros, em áreas com poucas obstruções.

#### Método Cinemático

No método cinemático mede-se a posição relativa dos pontos levantados em um intervalo de tempo pré-definido pelo usuário, com o receptor deslocando-se continuamente ( no método Stop na Go, mede-se apenas nos pontos escolhidos pelo operador). No caso de ocorrer perda de ciclo deve-se proceder como no método Stop and Go.

Há alguns autores que consideram o método *Cinemático e Tempo Real* uma variação desse método. A diferença é que o GPS seria equipado com um link de rádio VHF ou UHF, de modo a resolver a ambigüidade com reinicialização em movimento *On the fly ou reinicialização estática*.

O método cinemático tem sua maior aplicação na determinação de trajetória de objetos em movimento. Pode também ser utilizado para o levantamento de perfis, determinação de posição de barcos e aviões.

#### DGPS – Differencial Global Positioning System

O DGPS é uma técnica de medição diferencial baseada no código C/A para isso, um receptor é colocado fixo num ponto com coordenadas previamente determinadas. Através da comparação de valores obtidos pelo rastreio dos satélites com os valores conhecidos, são obtidas correções a serem aplicadas por receptor.

O principal objetivo desse método é a eliminação dos erros sistemáticos de navegação, sobretudo em função do SA. O erro típico na posição absoluta de um receptor que usa o código C/A é de aproximadamente 30 metros. Com o SA ligado este erro aumenta para  $\pm$  100 metros. Com a alternativa do DGPS o erro fica na ordem de 1 a 3 metros no receptor móvel.

Quando se exige a posição em tempo real do receptor móvel é necessário que a estação – base transmita via rádio as correções, para que sejam recebidas e aplicadas. Este é o caso mais comum na navegação.

No Brasil, empresas privadas como a RACAL, a FUGRO e a OMNISTAR estão explorando o DGPS, através de redes de estações na Brasil e na América do Sul.

Quadro comparativo entre precisões e tempo de observação nos diversos métodos de medição GPS:

| Método de medição | Tempo de observação | Precisão      |
|-------------------|---------------------|---------------|
| Absoluto          | 30 - 60 segundos    | 30 m – 100 m  |
| Estático          | 1 – 4 horas         | 5 mm + 1 ppm  |
| Rápido estático   | 10 a 20 minutos     | 1 cm + 1 ppm  |
| Stop and Go       | 10 a 20 segundos    | 10 cm – 20 cm |
| Cinemático        | 1 segundo           | 10 cm – 1 m   |
| DGPS              | Tempo real          | 1 m – 3 m     |

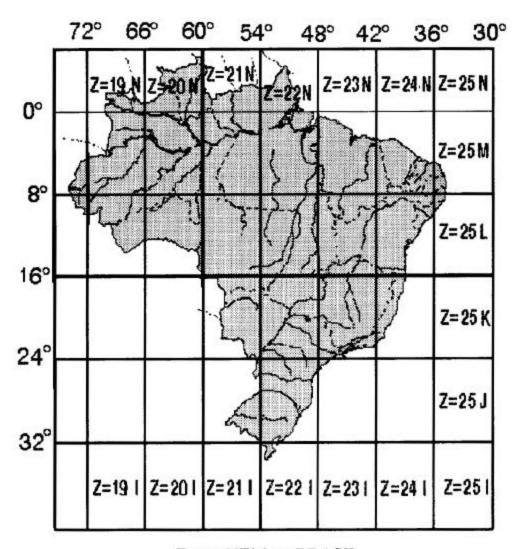
## PREPARAÇÃO PARA EXECUÇÃO DO LEVANTAMENTO (RASTREIO)

- 1 SELEÇÃO DO SITE (TRANSPORTE DE COORDENADAS)
- 2 CONFIGURAÇÃO DOS RECEPTORES
- 2.1 CONFIGURAÇÃO DE ITENS CRÍTICOS

NOME DO PONTO (SITE)
TIPO DE POSICIONAMENTO
TAXA DE COLETA – 15 ou 20 segundos (maioria)
TEMPO DE COLETA OU DE RASTREIO – depende da precisão desejada
EPE MÁX < 10

## 2.2 - CONFIGURAÇÃO DE ITENS ALTERNATIVOS

TIPO DE DATUM PARA VISUALIZAÇÃO ALARME SONOROS INTENSIDADE DE LUZ NA TELA


#### 3 - PRÉ-PROCESSAMENTO

TRANSFERÊNCIA DE DADOS EDIÇÃO DE ARQUIVOS

#### 4 - PROCESSAMENTO

## **ANEXOS**

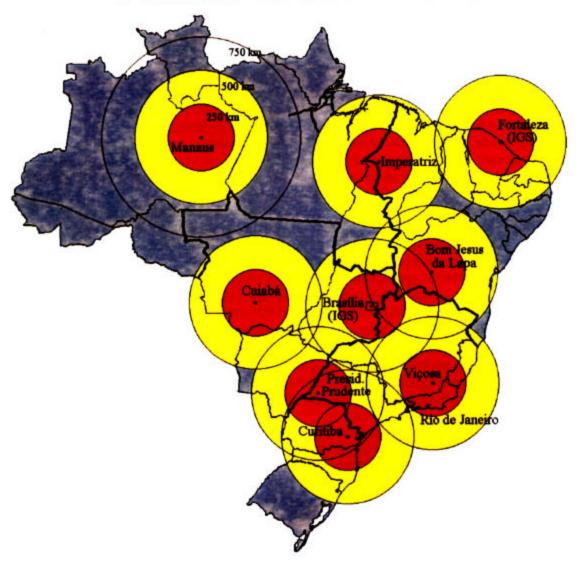
### **ZONAS UTM NO BRASIL**



Zonas UTM no BRASIL

|       | Meridiano Central |
|-------|-------------------|
| Fusos |                   |
| 18    | - 75°             |
| 19    | - 69°             |
| 20    | - 63°             |
| 21    | - 57°             |
| 22    | - 51°             |
| 23    | - 45°             |
| 24    | - 39°             |
| 25    | - 33°             |

### Fórmulas usadas


Fuso = 
$$\frac{MC + 183}{6}$$

$$MC = 6 F - 183$$

## **TIPOS DE REDES GPS**

1. ATIVAS -----> IBGE, INCRA

# Rede Brasileira de Monitoramento Contínuo do Sistema GPS



2. PASSIVAS ----> REDES GPS ESTADUAIS: RS, SC, PR, SP

# **Equipamentos GPS**

| Aplicação                | Fabric.       | Modelo              | N°<br>Máx.<br>Satél | Sinais<br>Rastreados                  | Precisão     |            | Peso<br>(Kg) | Preço<br>Unit.<br>(R\$) |
|--------------------------|---------------|---------------------|---------------------|---------------------------------------|--------------|------------|--------------|-------------------------|
|                          |               | GPS-35              | 12                  |                                       | 100m         | (RMS*)     | 0,15         | 650                     |
|                          |               | GPS-38              | 8                   |                                       | 100m         | 15m (RMS*) | 0,25         | 440                     |
|                          |               | GPS-45              | 8                   |                                       | 100m         | 15m (RMS*) | 0,25         | 655                     |
| Levantamento             | Garmin        | GPS-75              | 8                   |                                       | 100m         | 15m (RMS*) | 0,35         | 1.800                   |
| Expedito                 |               | GPS-45XL            | 8                   | L1 C/A                                | 100m         |            | 0,25         | 650                     |
| Navegação                |               | GPS-12XL            | 12                  | Código                                | 100m         |            | 0,25         | 675                     |
| Autônoma                 |               | GPS II              | 8                   |                                       |              | 100m       |              | 525                     |
|                          | Trimble       | ScoutMaster         | 8                   |                                       |              | 100m       | 0,40         | 1.000                   |
|                          | Magellan      | GPS2000             | 12                  |                                       | 100m         | 15m (RMS*) | 0,28         | 570                     |
|                          | liviagellai i | GPS3000             | 12                  |                                       | 100m         | 15m (RMS*) | 0,28         | 600                     |
|                          | Magellan      | Field Pro V         | 5                   |                                       |              | 1 a 3m     | 0,85         | 3.000                   |
|                          | Iviageliai i  | Pro Mark X          | 10                  |                                       |              | 1 a 3m     | 0,85         | 4.800                   |
|                          | Trimble       | ScoutMaster         | 8                   |                                       |              | < 10m      | 0,40         | 1.000                   |
|                          | I IIIIIble    | Geoexplorer         | 8                   |                                       |              | 2 a 5m     | 0,40         | 6.150                   |
|                          |               | GPS-38              | 8                   |                                       |              | 3 a 10m    | 0,25         | 500                     |
| Levantamento             |               | GSP-45              | 8                   | 110/4                                 |              | 3 a 10m    | 0,25         | 775                     |
| Expedito<br>Navegação    |               | GPS-75              | 8                   | L1 C/A<br>Código                      |              | 3 a 10m    | 0,70         | 1.800                   |
| Diferencial              | Garmin        | SRVY II             | 8                   | J J J J J J J J J J J J J J J J J J J |              | 1 a 5m     | 0,70         | 5.500                   |
|                          |               | GPS-45XL            | 8                   |                                       |              | 3 a 10m    | 0,25         | 650                     |
|                          |               | GPS-12XL            | 12                  |                                       | 3 a 10m      |            | 0,25         | 675                     |
|                          |               | GPS II              | 8                   |                                       | 3 a 10m      |            | 0,25         | 525                     |
|                          | СМТ           | March I e II        | 8                   |                                       | 1 a 5m       |            | 0,95         | 3.950                   |
|                          |               | GPS N3              | 12                  |                                       | 1m           |            | 1,50         | 14.000                  |
|                          | Sokkia        | Spectrum            | 8                   | L1 C/A                                |              | < 1m       | 0,40         | 12.000                  |
|                          | Trimble       | Geoexplorer         | 8                   | Código e<br>Portadora                 | < 1m         |            | 0,40         | 5.700                   |
|                          |               | Pro XR              | 8 a<br>12           | L1 C/A<br>Código                      | < 0,75m      |            | 1,10         | 16.600                  |
|                          |               | Pro XRS             | 8 a<br>12           |                                       |              | < 0,10m    | 1,10         | 17.920                  |
|                          | Magellan      | Pro Mark X-CP       | 10                  |                                       | < 1m         |            | 0,85         | 8.000                   |
|                          |               | G12                 | 12                  |                                       | < 0,90m      |            | 0,20         | 5.000                   |
|                          | Ashtech       | Super C/A<br>Sensor | 12                  |                                       | < 0,75m      |            | 1,10         | 13.000                  |
| Navagação                |               | DNS-12              | 12                  |                                       | < 1m         |            | 3,60         | 18.000                  |
| Navegação<br>Diferencial | CMT           | March I e II        | 8                   |                                       | 50cm         |            | 0,95         | 6.250                   |
| de Precisão              |               | GPS N3              | 12                  | 12                                    |              | 1cm + 2ppm |              | 15.000                  |
|                          |               | Gismo               | 12                  | L1 C/A<br>Código e<br>Portadora       | 1c           | m + 1ppm   | 1,20         | 15.000                  |
| Geodésico                | Sokkia        | GSS 1A              | 8<br>8 a            | L1 C/A<br>Código e                    | 0,5cm + 1ppm |            | 0,65         | 15.000                  |
| Estático<br>Bases        | Trimble       | 4600 LS             | 12                  | Portadora                             | 0,5cm + 1ppm |            | 1,30         | 9.700                   |
| Curtas e                 |               | 4000 Si             | 9 a<br>12           |                                       | 0,5          | cm + 1ppm  | 2,40         | 22.500                  |

| Cinemático                                                                        | Wild      | System 200<br>SR 261  | 6         |                                                                                | 1cr                                                                                                                    | m + 2ppm       | 1,60   | 15.000 |
|-----------------------------------------------------------------------------------|-----------|-----------------------|-----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------|--------|--------|
|                                                                                   |           | System 200<br>SR 9400 | 12        |                                                                                | 1cr                                                                                                                    | m + 2ppm       | 1,60   | 15.000 |
|                                                                                   | Topcon    | GP-R1                 | 12        |                                                                                | 0,5cm + 2ppm                                                                                                           |                | 3,80   | 22.500 |
|                                                                                   | Ashtech   | STEP I                | 12        |                                                                                | 1cr                                                                                                                    | 1cm + 2ppm     |        | 11.500 |
|                                                                                   | ASITIECTI | Reliance              | 12        |                                                                                | 1cr                                                                                                                    | m + 2ppm       | 1,10   | 18.000 |
|                                                                                   | CMT       | GPS N3                | 12        |                                                                                | 1cr                                                                                                                    | m + 2ppm       | 1,50   | 14.000 |
|                                                                                   | Nikon     | Gismo                 | 12        |                                                                                |                                                                                                                        | m + 1ppm       | 1,20   | 15.000 |
|                                                                                   | Zeiss     | GePos RS 12           | 12        |                                                                                |                                                                                                                        | m + 2ppm       | 2,80   | 15.900 |
|                                                                                   | Sokkia    | GSR 1100              | 12        |                                                                                |                                                                                                                        | m + 1ppm       | 0,50   | 28.000 |
| Geodésico                                                                         | Trimble   | 4000 SSi              | 9 a       |                                                                                |                                                                                                                        | 0,5cm + 1ppm   |        | 40.000 |
| Estático<br>Bases<br>Longas e                                                     | Wild      | System 200<br>SR 299  | 12        | L1 C/A<br>Código e<br>Portadora L2<br>Squaring                                 | 0,5cm<br>+<br>1ppm                                                                                                     | 50cm<br>(RMS*) | 2,30   | 25.000 |
| Cinemático                                                                        | Topcon    | GP R1-D               | 12        |                                                                                | 0,50                                                                                                                   | m + 1ppm       | 4,00   | 32.000 |
|                                                                                   | Nikon     | Outrider              | 12        |                                                                                |                                                                                                                        | m + 1ppm       | 1,20   | 29.000 |
|                                                                                   | Sokkia    | GSR 2100              | 12        |                                                                                |                                                                                                                        | m + 1ppm       | 3,50   | 39.000 |
|                                                                                   |           |                       | 9 a       |                                                                                |                                                                                                                        |                | 3,10   |        |
|                                                                                   | Trimble   | 4000 SSi              | 12        |                                                                                | <u> </u>                                                                                                               | 0,5cm + 1ppm   |        | 41.700 |
| Geodésico<br>Estático                                                             | Wild      | System 300<br>SR 399  | 9         | L1 C/A<br>Código e<br>Portadora L2 P                                           | 0,5cm<br>+<br>1ppm                                                                                                     | 30cm<br>(RMS)* | 2,30   | 29.000 |
| Cinemático e<br>Rápido<br>Estático                                                |           | System 300<br>SR 9500 | 12        | ou Y<br>Código e<br>Portadora                                                  | 0,5cm<br>+<br>1ppm                                                                                                     | 30cm<br>(RMS)* | 2,30   | 28.500 |
|                                                                                   | Topcon    | Turbo-SII             | 8         | 0,5cm + 1ppm                                                                   |                                                                                                                        | 1,20           | 45.000 |        |
|                                                                                   | Ashtech   | Z-12                  | 12        |                                                                                | 0,5cm + 1ppm<br>0,5cm + 1ppm                                                                                           |                | 3,60   | 36.500 |
|                                                                                   | Nikon     | Outrider              | 12        |                                                                                |                                                                                                                        |                | 1,20   | 29.000 |
|                                                                                   | Zeiss     | GeoPos RD 24          | 12        |                                                                                | 0,50                                                                                                                   | m + 1ppm       | 2,90   | 26.900 |
|                                                                                   | Sokkia    | GSR 2200              | 12        |                                                                                | 0,5cm + 1ppm                                                                                                           |                | 3,50   | 39.000 |
|                                                                                   | Trimble   | 4000 c/<br>OTF        | 12        |                                                                                | 1cm + 1ppm                                                                                                             |                | 2,80   | 39.000 |
|                                                                                   |           | 4000 SSi<br>+ OTI     | 9 a<br>12 |                                                                                | 0,50                                                                                                                   | cm + 1ppm      | 3,10   | 48.000 |
|                                                                                   |           | System 300<br>SR 399  | 9         | L1 C/A                                                                         | 0,5cm<br>+<br>1ppm                                                                                                     | 30cm<br>(RMS)* | 2,30   | 29.000 |
| Geodésico<br>Dinâmico                                                             |           | System 300<br>SR 9500 | 12        | Código e<br>Portadora L2 P<br>ou Y                                             | 0,5cm<br>+<br>1ppm                                                                                                     | 30cm<br>(RMS)* | 2,30   | 28.800 |
| (on-the-fly)                                                                      | Ashtech   | Z-12                  | 12        | Código e 0,5cm + 1ppm                                                          |                                                                                                                        |                | 3,60   | 35.000 |
|                                                                                   | Nikon     | Autrider              | 12        | Portadora                                                                      | 0,50                                                                                                                   | m + 1ppm       | 1,20   | 29.000 |
|                                                                                   | Zeiss     | GeoPos RD 24 RT       | RT 12     |                                                                                | 2cm + 1ppm (Real<br>Time)<br>0,5cm + 1ppm (Pós-<br>Proc.)<br>2cm + 1ppm (Real<br>Time)<br>0,5cm + 1ppm (Pós-<br>Proc.) |                | 2,90   | 30.900 |
|                                                                                   |           | GeoPos RM 24 12       | 12        |                                                                                |                                                                                                                        |                | 2,80   | 34.000 |
| Geodésico<br>Estático<br>Cinemático e<br>Rápido<br>Estático<br>(GPS +<br>Glonass) | Zeiss     | GeoPos RG 24          | 24        | L1 C/A<br>Código e<br>Portadora (GPS)<br>L1 Código e<br>Portadora<br>(Glonass) | 0,50                                                                                                                   | cm + 1ppm      | 2,80   | 31.000 |

#### **BIBLIOGRAFIA**

Revista FATOR GIS on line. Endereço eletrônico: www.fatorgis.com.br

HOFMANN-WELLENHOF, B.; LICHTENEGGER, H.; COLLINS, J. – GPS Theory an Pratice. 4<sup>a</sup> ed. SpringerVienNewYork. 1997.

SEGANTINE, P. C. L. – GPS Sistema de Posicionamento Global – parte2 – Curso de Atuallização em Topografia e GPS. São Carlos – SP. 1996.

SICKLE, J. V. GPS for Land Surveyors. Ann arbor Press, Inc. Chelsea, Michigan. 1996.

SILVEIRA, L. C. – GPS Conceitos Básicos e aplicações práticas.Lucas Eventos Ltda. Criciuma –SC.